Độ lệch (Skewness) là gì? Công thức tính độ lệch

Độ lệch (tiếng Anh: Skewness) là sự biến dạng sự bất đối xứng trong một phân phối hình chuông đối xứng hay phân phối chuẩn trong một tập dữ liệu.
Skewness

Hình minh họa. Nguồn: 365datascience.com

Đ lệch

Khái nim

Đ lệch trong tiếng Anh là Skewness.

Nếu phân hối hình chuông bị dịch chuyển sang trái hoặc sang phải, nó được cho là bị lệch. Đ lệch được coi là một đại diện cho mức độ khác bit của mt phân phối nhất định so với phân phối chuẩn. Một phân phối chuẩn có độ lệch bằng 0, trong khi phân phối phân phối xác suất loga chuẩn sẽ có lệch về phía bên phải.

Ba phân phối xác suất được minh họa dưới đây có đ lệch dương (hoặc lệch phải) ở mức độ ngày càng tăng. Phân phối lệch âm còn được gọi là phân phối lệch trái. Đ lệch được sử dụng cùng với đ nhọn để đánh giá khả năng các biến cố rơi vào đuôi của phân phối xác suất tốt hơn.

Clipboard01-5c684fb046e0fb0001f0e38b

Hình minh họa về độ lệch. Nguồn: Investopedia

Hiểu về Đ lệch

Bên cạnh độ lệch dương và âm, phân phối cũng có thể được cho là không có độ lệch hoặc không xác định được đ lệch. Số liệu ở phía bên phải của đường cong phân phối có thể giảm dần với mức đ khác với số liệu ở phía bên trái. Đ lệch âm (negative skewness) có đuôi dài hơn hoặc rộng hơn ở phía bên trái của phân phối, trong khi đ lệch dương (positive skewness) có đuôi dài hơn hoặc rộng hơn ở bên phải.

446px-Negative_and_positive_skew_diagrams_%28English%29

Độ lệch âm và độ lệch dương. Nguồn: Wikipedia

Giá trị trung bình của dữ liệu có đ lệch dương sẽ lớn hơn trung vị. Trong một phân phối bị lệch âm là trường hợp hoàn toàn ngược lại, giá trị trung bình của dữ liệu bị lệch âm sẽ nhỏ hơn giá trị trung vị. Nếu biểu đồ dữ liệu đối xứng, phân phối có độ lệch bằng 0 bất kể đuôi dài hay rộng.

Có một số cách để đo độ lệch. Hệ số đ lệch thứ nhất và thứ hai của Pearson là hai công cụ phổ biến nhất. Hệ số độ lệch đầu tiên của Pearson, hay độ lệch yếu vị Pearson, được tính bằng cách trừ giá trị trung bình cho yếu vị và chia kết quả cho độ lệch chuẩn. Hệ số độ lệch thứ hai của Pearson hay độ lệch trung vị Pearson được tính bằng cách trừ trung vị từ giá trị trung bình, nhân với 3 và chia kết quả cho độ lệch chuẩn.

Công thức tính đ lệch của Pearson 

SK1 = (Giá trị trung bình - yếu vị)/ Đ lệch chuẩn

SK= (Giá trị trung bình - trung vị)/ Đ lệch chuẩn

Trong đó:

SK1 là Hệ số độ lệch đầu tiên của Pearson, hay độ lệch yếu vị Pearson

SK2 là Hệ số độ lệch thứ hai  của Pearson, hay độ lệch trung vị Pearson

Hệ số đ lệch đầu tiên của Pearson hữu dụng hơn nếu tp dữ liệu có yếu vị mạnh. Nếu tp dữ liệu có yếu vị yếu hoặc nhiều yếu vị, hệ số đ lệch thứ hai của Pearson có thể thích hợp hơn vì nó không dựa vào yếu vị để đo của xu hướng tp trung của tp dữ liu.

Đ lệch cho biết điều gì

Các nhà đầu tư chú ý đến đ lệch khi quan sát phân phối lợi nhun vì nó, giống như đ nhọn, xem xét các điểm cực trị của tập dữ liệu thay vì chỉ tập trung vào giá trị trung bình. Các nhà đầu tư ngắn hạn và trung hạn đặc biệt cần xem xét các điểm cực trị bởi vì họ ít có khả năng giữ một chứng khoán trong thời gian dài.

Các nhà đầu tư thường sử dụng độ lệch chuẩn để dự đoán lợi nhuận trong tương lai, nhưng độ lệch chuẩn có giả định là phân phối chuẩn. Tuy nhiên có ít phân phối lợi nhun gần với phân phối chuẩn, độ lệch là một thước đo tốt hơn để dựa vào đó dự đoán hiệu suất. 

Rủi ro đ lệch là rủi ro gia tăng trong việc tăng mt điểm dữ liệu có độ lệch cao trong phân phối lệch. Nhiều mô hình tài chính cố gắng dự đoán hiệu suất trong tương lai của một tài sản với giả định là phân phối chuẩn. Nếu dữ liệu bị sai lệch, mô hình này sẽ luôn đánh giá thấp rủi ro sai lệch trong dự đoán của nó. Dữ liệu càng sai lệch, mô hình tài chính này càng kém chính xác.

(Theo Investopedia)

CÙNG CHUYÊN MỤC